**Author**: Rolland Trapp

**Publisher:** Oxford University Press, USA

**ISBN:** 0198835175

**Size**: 16.54 MB

**Format:** PDF, Mobi

**Category : **Calculus

**Languages : **en

**Pages : **480

**View:** 3892

In this modern treatment of the topic, Rolland Trapp presents an accessible introduction to the topic of multivariable calculus, supplemented by the use of fully interactive three-dimensional graphics throughout the text. Multivariable Calculus opens with an introduction to points, curves and surfaces, easing student transitions from two- to three-dimensions, and concludes with the main theorems of vector calculus. All standard topics of multivariable calculus are covered in between, including a variety of applications within the physical sciences. The exposition combines rigor and intuition, resulting in a well-rounded resource for students of the subject. In addition, the interactive three-dimensional graphics, accessible through the electronic text or via the companion website, enhance student understanding while improving their acuity. The style of composition, sequencing of subjects, and interactive graphics combine to form a useful text that appeals to a broad audience: students in the sciences, technology, engineering, and mathematics alike.

Get This Book
**Author**: James Stewart

**Publisher:** Cengage Learning

**ISBN:** 1305804422

**Size**: 64.14 MB

**Format:** PDF, Kindle

**Category : **Mathematics

**Languages : **en

**Pages : **624

**View:** 1208

Reflecting Cengage Learning's commitment to offering flexible teaching solutions and value for students and instructors, these hybrid versions feature the instructional presentation found in the printed text while delivering end-of-section and/or end-of chapter exercises online in Enhanced WebAssign. The resultâ€”a briefer printed text that engages students online! James Stewart's CALCULUS texts are widely renowned for their mathematical precision and accuracy, clarity of exposition, and outstanding examples and problem sets. Millions of students worldwide have explored calculus through Stewart's trademark style, while instructors have turned to his approach time and time again. In the Eighth Edition of MULTIVARIABLE CALCULUS, Stewart continues to set the standard for the course while adding carefully revised content. The patient explanations, superb exercises, focus on problem solving, and carefully graded problem sets that have made Stewart's texts best-sellers continue to provide a strong foundation for the Eighth Edition. From the least prepared student to the most mathematically gifted, Stewart's writing and presentation serve to enhance understanding and build confidence. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Get This Book
**Author**: Clark Bray

**Publisher:**
**ISBN:** 9781482550740

**Size**: 52.27 MB

**Format:** PDF

**Category : **Calculus

**Languages : **en

**Pages : **484

**View:** 3353

For more information, including an entire collection of free video lectures and video help with exercises, see the book webpage at: http: //www.math.duke.edu/ cbray/mv/ This is a textbook on multivariable calculus, whose target audience is the students in Math 212 at Duke University -- a course in multivariable calculus intended for students majoring in the sciences and engineering. This book has been used in summer offerings of that course several times, taught by Clark Bray. It is intended to fill a gap in the spectrum of multivariable calculus textbooks. It goes beyond books that are oriented around formulas that students can simply memorize, but it does not include the abstraction and rigor that can be found in books that give the most complete and sophisticated presentations of the material. This book would be appropriate for use at any university. It assumes only that the student is proficient in single variable calculus and its prerequisites. The material in this book is developed in a way such that students can see a motivation behind the development, not just the results. The emphasis is on giving students a way to visualize the ideas and see the connections between them, with less emphasis on rigor. The book includes substantial applications, including much discussion of gravitational, electric, and magnetic fields, Maxwell's laws, and the relationships of these physical ideas to the vector calculus theorems of Gauss and Stokes. It also includes a brief discussion of linear algebra, allowing for the discussion of the derivative transformation and Jacobian matrices, which are then used often elsewhere in the book. And there are extensive discussions of multivariable functions and the different ways to represent them geometrically, manipulating multivariable equations and the effects on the solution sets.

Get This Book
**Author**: Peter D. Lax

**Publisher:** Springer

**ISBN:** 3319740733

**Size**: 61.27 MB

**Format:** PDF, Mobi

**Category : **Mathematics

**Languages : **en

**Pages : **483

**View:** 1330

This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokesâ€™ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics.

Get This Book
**Author**: Sudhir R. Ghorpade

**Publisher:** Springer Science & Business Media

**ISBN:** 1441916210

**Size**: 36.13 MB

**Format:** PDF, Kindle

**Category : **Mathematics

**Languages : **en

**Pages : **475

**View:** 1168

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.